Tor functor Homological algebra
suppose r ring, , denoted r-mod category of left r-modules , mod-r category of right r-modules (if r commutative, 2 categories coincide). fix module b in r-mod. in mod-r, set t(a) = a⊗rb. t right exact functor mod-r category of abelian groups ab (in case when r commutative, right exact functor mod-r mod-r) , left derived functors lnt defined. set
t
o
r
n
r
(
a
,
b
)
=
(
l
n
t
)
(
a
)
{\displaystyle \mathrm {tor} _{n}^{r}(a,b)=(l_{n}t)(a)}
i.e., take projective resolution
⋯
→
p
2
→
p
1
→
p
0
→
a
→
0
{\displaystyle \cdots \rightarrow p_{2}\rightarrow p_{1}\rightarrow p_{0}\rightarrow a\rightarrow 0}
then remove term , tensor projective resolution b complex
⋯
→
p
2
⊗
r
b
→
p
1
⊗
r
b
→
p
0
⊗
r
b
→
0
{\displaystyle \cdots \rightarrow p_{2}\otimes _{r}b\rightarrow p_{1}\otimes _{r}b\rightarrow p_{0}\otimes _{r}b\rightarrow 0}
(note a⊗rb not appear , last arrow 0 map) , take homology of complex.
Comments
Post a Comment