The snake lemma Homological algebra
in abelian category (such category of abelian groups or category of vector spaces on given field), consider commutative diagram:
where rows exact sequences , 0 0 object. there exact sequence relating kernels , cokernels of a, b, , c:
ker
a
⟶
ker
b
⟶
ker
c
⟶
d
coker
a
⟶
coker
b
⟶
coker
c
{\displaystyle \ker a\;{\color {gray}\longrightarrow }\ker b\;{\color {gray}\longrightarrow }\ker c\;{\overset {d}{\longrightarrow }}\operatorname {coker} a\;{\color {gray}\longrightarrow }\operatorname {coker} b\;{\color {gray}\longrightarrow }\operatorname {coker} c}
furthermore, if morphism f monomorphism, morphism ker a → ker b, , if g epimorphism, coker b → coker c.
Comments
Post a Comment