Thermal loading Thermal shock



estimates of maximal value of loss



β


{\displaystyle \beta }

, @ desirable output power



p


{\displaystyle p}

still available in single disk laser, versus normalized power



s
=



ω


p




ω


s








p
q


r

2






{\displaystyle s={\frac {\omega _{\rm {p}}}{\omega _{\rm {s}}}}{\frac {pq}{r^{2}}}}

, , experimental data (circles)


is thermal loading; parameter, important property of laser material. thermal loading, saturation intensity



q


{\displaystyle q}

, loss



β


{\displaystyle \beta }

determine limit of power scaling of disk lasers . roughly, maximal power @ optimised sizes



l


{\displaystyle l}

,



h


{\displaystyle h}

, of order of



p
=



r

2



q

β

3







{\displaystyle p={\frac {r^{2}}{q\beta ^{3}}}}

. estimate sensitive loss



β


{\displaystyle \beta }

. however, same expression can interpreted robust estimate of upper bound of loss



 
β
 


{\displaystyle ~\beta ~}

required desirable output power



p


{\displaystyle p}

:







 

β


m
a
x



=


(



r

2



p
q



)



1
3



.


{\displaystyle ~\beta _{\mathrm {max} }=\left({\frac {r^{2}}{pq}}\right)^{\frac {1}{3}}.}



all disk lasers reported work @ round-trip loss below estimate. thermal shock parameter , loading depend of temperature of heat sink. hopes related laser, operating @ cryogenic temperatures.


the corresponding increase of thermal shock parameter allow softer requirements round-trip loss of disk laser @ power scaling.








Comments

Popular posts from this blog

CACHEbox ApplianSys

Kinship systems Apache

Western Apache Apache