Thermal shock parameter in the physics of solid-state lasers Thermal shock
estimates of maximal value of loss
β
{\displaystyle \beta }
, @ desirable output power
p
{\displaystyle p}
still available in single disk laser, versus normalized power
s
=
ω
p
ω
s
p
q
r
2
{\displaystyle s={\frac {\omega _{\rm {p}}}{\omega _{\rm {s}}}}{\frac {pq}{r^{2}}}}
, , experimental data (circles)
is thermal loading; parameter, important property of laser material. thermal loading, saturation intensity
q
{\displaystyle q}
, loss
β
{\displaystyle \beta }
determine limit of power scaling of disk lasers . roughly, maximal power @ optimised sizes
l
{\displaystyle l}
,
h
{\displaystyle h}
, of order of
p
=
r
2
q
β
3
{\displaystyle p={\frac {r^{2}}{q\beta ^{3}}}}
. estimate sensitive loss
β
{\displaystyle \beta }
. however, same expression can interpreted robust estimate of upper bound of loss
β
{\displaystyle ~\beta ~}
required desirable output power
p
{\displaystyle p}
:
β
m
a
x
=
(
r
2
p
q
)
1
3
.
{\displaystyle ~\beta _{\mathrm {max} }=\left({\frac {r^{2}}{pq}}\right)^{\frac {1}{3}}.}
all disk lasers reported work @ round-trip loss below estimate. thermal shock parameter , loading depend of temperature of heat sink. hopes related laser, operating @ cryogenic temperatures.
the corresponding increase of thermal shock parameter allow softer requirements round-trip loss of disk laser @ power scaling.
Comments
Post a Comment