The Ext functor Homological algebra
let r ring , let modr category of modules on r. let b in modr , set t(b) = homr(a,b), fixed in modr. left exact functor , has right derived functors rt. ext functor defined by
ext
r
n
(
a
,
b
)
=
(
r
n
t
)
(
b
)
.
{\displaystyle \operatorname {ext} _{r}^{n}(a,b)=(r^{n}t)(b).}
this can calculated taking injective resolution
0
→
b
→
i
0
→
i
1
→
…
,
{\displaystyle 0\rightarrow b\rightarrow i^{0}\rightarrow i^{1}\rightarrow \dots ,}
and computing
0
→
hom
r
(
a
,
i
0
)
→
hom
r
(
a
,
i
1
)
→
…
.
{\displaystyle 0\rightarrow \operatorname {hom} _{r}(a,i^{0})\rightarrow \operatorname {hom} _{r}(a,i^{1})\rightarrow \dots .}
then (rt)(b) homology of complex. note homr(a,b) excluded complex.
an alternative definition given using functor g(a)=homr(a,b). fixed module b, contravariant left exact functor, , have right derived functors rg, , can define
ext
r
n
(
a
,
b
)
=
(
r
n
g
)
(
a
)
.
{\displaystyle \operatorname {ext} _{r}^{n}(a,b)=(r^{n}g)(a).}
this can calculated choosing projective resolution
⋯
→
p
1
→
p
0
→
a
→
0
,
{\displaystyle \dots \rightarrow p^{1}\rightarrow p^{0}\rightarrow a\rightarrow 0,}
and proceeding dually computing
0
→
hom
r
(
p
0
,
b
)
→
hom
r
(
p
1
,
b
)
→
…
.
{\displaystyle 0\rightarrow \operatorname {hom} _{r}(p^{0},b)\rightarrow \operatorname {hom} _{r}(p^{1},b)\rightarrow \dots .}
then (rg)(a) homology of complex. again note homr(a,b) excluded.
these 2 constructions turn out yield isomorphic results, , both may used calculate ext functor.
Comments
Post a Comment