The Ext functor Homological algebra



let r ring , let modr category of modules on r. let b in modr , set t(b) = homr(a,b), fixed in modr. left exact functor , has right derived functors rt. ext functor defined by








ext

r


n



(
a
,
b
)
=
(

r

n


t
)
(
b
)
.


{\displaystyle \operatorname {ext} _{r}^{n}(a,b)=(r^{n}t)(b).}



this can calculated taking injective resolution







0

b


i

0




i

1




,


{\displaystyle 0\rightarrow b\rightarrow i^{0}\rightarrow i^{1}\rightarrow \dots ,}



and computing







0


hom

r



(
a
,

i

0


)


hom

r



(
a
,

i

1


)


.


{\displaystyle 0\rightarrow \operatorname {hom} _{r}(a,i^{0})\rightarrow \operatorname {hom} _{r}(a,i^{1})\rightarrow \dots .}



then (rt)(b) homology of complex. note homr(a,b) excluded complex.


an alternative definition given using functor g(a)=homr(a,b). fixed module b, contravariant left exact functor, , have right derived functors rg, , can define








ext

r


n



(
a
,
b
)
=
(

r

n


g
)
(
a
)
.


{\displaystyle \operatorname {ext} _{r}^{n}(a,b)=(r^{n}g)(a).}



this can calculated choosing projective resolution










p

1




p

0



a

0
,


{\displaystyle \dots \rightarrow p^{1}\rightarrow p^{0}\rightarrow a\rightarrow 0,}



and proceeding dually computing







0


hom

r



(

p

0


,
b
)


hom

r



(

p

1


,
b
)


.


{\displaystyle 0\rightarrow \operatorname {hom} _{r}(p^{0},b)\rightarrow \operatorname {hom} _{r}(p^{1},b)\rightarrow \dots .}



then (rg)(a) homology of complex. again note homr(a,b) excluded.


these 2 constructions turn out yield isomorphic results, , both may used calculate ext functor.







Comments

Popular posts from this blog

CACHEbox ApplianSys

Kinship systems Apache

Western Apache Apache