Generators of rotations Euler's rotation theorem



suppose specify axis of rotation unit vector [x, y, z], , suppose have infinitely small rotation of angle Δθ vector. expanding rotation matrix infinite addition, , taking first order approach, rotation matrix Δr represented as:







Δ
r
=


[



1


0


0




0


1


0




0


0


1



]


+


[



0


z



y





z


0


x




y



x


0



]



Δ
θ
=

i

+

a


Δ
θ
.


{\displaystyle \delta r={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}+{\begin{bmatrix}0&z&-y\\-z&0&x\\y&-x&0\end{bmatrix}}\,\delta \theta =\mathbf {i} +\mathbf {a} \,\delta \theta .}



a finite rotation through angle θ axis may seen succession of small rotations same axis. approximating Δθ θ/n n large number, rotation of θ axis may represented as:







r
=


(

1

+




a

θ

n


)


n




e


a

θ


.


{\displaystyle r=\left(\mathbf {1} +{\frac {\mathbf {a} \theta }{n}}\right)^{n}\approx e^{\mathbf {a} \theta }.}



it can seen euler s theorem states rotations may represented in form. product aθ generator of particular rotation, being vector (x,y,z) associated matrix a. shows rotation matrix , axis–angle format related exponential function.


one can derive simple expression generator g. 1 starts arbitrary plane (in euclidean space) defined pair of perpendicular unit vectors , b. in plane 1 can choose arbitrary vector x perpendicular y. 1 solves y in terms of x , substituting expression rotation in plane yields rotation matrix r includes generator g = ba − ab.














x




=

a

cos

α
+

b

sin

α





y




=


a

sin

α
+

b

cos

α




cos

α



=


a



t




x





sin

α



=


b



t




x






y




=



a
b



t




x

+


b
a



t




x

=

(


b
a



t






a
b



t



)


x







x






=

x

cos

β
+

y

sin

β






=

(

i

cos

β
+

(


b
a



t






a
b



t



)

sin

β
)


x






r




=

i

cos

β
+

(


b
a



t






a
b



t



)

sin

β






=

i

cos

β
+

g

sin

β





g




=


b
a



t






a
b



t









{\displaystyle {\begin{aligned}\mathbf {x} &=\mathbf {a} \cos \alpha +\mathbf {b} \sin \alpha \\\mathbf {y} &=-\mathbf {a} \sin \alpha +\mathbf {b} \cos \alpha \\\cos \alpha &=\mathbf {a} ^{\mathsf {t}}\mathbf {x} \\\sin \alpha &=\mathbf {b} ^{\mathsf {t}}\mathbf {x} \\[8px]\mathbf {y} &=-\mathbf {ab} ^{\mathsf {t}}\mathbf {x} +\mathbf {ba} ^{\mathsf {t}}\mathbf {x} =\left(\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\right)\mathbf {x} \\[8px]\mathbf {x} &=\mathbf {x} \cos \beta +\mathbf {y} \sin \beta \\&=\left(\mathbf {i} \cos \beta +\left(\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\right)\sin \beta \right)\mathbf {x} \\[8px]\mathbf {r} &=\mathbf {i} \cos \beta +\left(\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\right)\sin \beta \\&=\mathbf {i} \cos \beta +\mathbf {g} \sin \beta \\[8px]\mathbf {g} &=\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\end{aligned}}}



to include vectors outside plane in rotation 1 needs modify above expression r including 2 projection operators partition space. modified rotation matrix can rewritten exponential function.













p

a
b






=



g


2







r




=

i




p

a
b



+

(

i

cos

β
+

g

sin

β
)



p

a
b



=

e


g

β








{\displaystyle {\begin{aligned}\mathbf {p_{ab}} &=-\mathbf {g} ^{2}\\\mathbf {r} &=\mathbf {i} -\mathbf {p_{ab}} +\left(\mathbf {i} \cos \beta +\mathbf {g} \sin \beta \right)\mathbf {p_{ab}} =e^{\mathbf {g} \beta }\end{aligned}}}



analysis easier in terms of these generators, rather full rotation matrix. analysis in terms of generators known lie algebra of rotation group.







Comments

Popular posts from this blog

CACHEbox ApplianSys

Kinship systems Apache

Western Apache Apache