Generators of rotations Euler's rotation theorem
suppose specify axis of rotation unit vector [x, y, z], , suppose have infinitely small rotation of angle Δθ vector. expanding rotation matrix infinite addition, , taking first order approach, rotation matrix Δr represented as:
Δ
r
=
[
1
0
0
0
1
0
0
0
1
]
+
[
0
z
−
y
−
z
0
x
y
−
x
0
]
Δ
θ
=
i
+
a
Δ
θ
.
{\displaystyle \delta r={\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}}+{\begin{bmatrix}0&z&-y\\-z&0&x\\y&-x&0\end{bmatrix}}\,\delta \theta =\mathbf {i} +\mathbf {a} \,\delta \theta .}
a finite rotation through angle θ axis may seen succession of small rotations same axis. approximating Δθ θ/n n large number, rotation of θ axis may represented as:
r
=
(
1
+
a
θ
n
)
n
≈
e
a
θ
.
{\displaystyle r=\left(\mathbf {1} +{\frac {\mathbf {a} \theta }{n}}\right)^{n}\approx e^{\mathbf {a} \theta }.}
it can seen euler s theorem states rotations may represented in form. product aθ generator of particular rotation, being vector (x,y,z) associated matrix a. shows rotation matrix , axis–angle format related exponential function.
one can derive simple expression generator g. 1 starts arbitrary plane (in euclidean space) defined pair of perpendicular unit vectors , b. in plane 1 can choose arbitrary vector x perpendicular y. 1 solves y in terms of x , substituting expression rotation in plane yields rotation matrix r includes generator g = ba − ab.
x
=
a
cos
α
+
b
sin
α
y
=
−
a
sin
α
+
b
cos
α
cos
α
=
a
t
x
sin
α
=
b
t
x
y
=
−
a
b
t
x
+
b
a
t
x
=
(
b
a
t
−
a
b
t
)
x
x
′
=
x
cos
β
+
y
sin
β
=
(
i
cos
β
+
(
b
a
t
−
a
b
t
)
sin
β
)
x
r
=
i
cos
β
+
(
b
a
t
−
a
b
t
)
sin
β
=
i
cos
β
+
g
sin
β
g
=
b
a
t
−
a
b
t
{\displaystyle {\begin{aligned}\mathbf {x} &=\mathbf {a} \cos \alpha +\mathbf {b} \sin \alpha \\\mathbf {y} &=-\mathbf {a} \sin \alpha +\mathbf {b} \cos \alpha \\\cos \alpha &=\mathbf {a} ^{\mathsf {t}}\mathbf {x} \\\sin \alpha &=\mathbf {b} ^{\mathsf {t}}\mathbf {x} \\[8px]\mathbf {y} &=-\mathbf {ab} ^{\mathsf {t}}\mathbf {x} +\mathbf {ba} ^{\mathsf {t}}\mathbf {x} =\left(\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\right)\mathbf {x} \\[8px]\mathbf {x} &=\mathbf {x} \cos \beta +\mathbf {y} \sin \beta \\&=\left(\mathbf {i} \cos \beta +\left(\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\right)\sin \beta \right)\mathbf {x} \\[8px]\mathbf {r} &=\mathbf {i} \cos \beta +\left(\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\right)\sin \beta \\&=\mathbf {i} \cos \beta +\mathbf {g} \sin \beta \\[8px]\mathbf {g} &=\mathbf {ba} ^{\mathsf {t}}-\mathbf {ab} ^{\mathsf {t}}\end{aligned}}}
to include vectors outside plane in rotation 1 needs modify above expression r including 2 projection operators partition space. modified rotation matrix can rewritten exponential function.
p
a
b
=
−
g
2
r
=
i
−
p
a
b
+
(
i
cos
β
+
g
sin
β
)
p
a
b
=
e
g
β
{\displaystyle {\begin{aligned}\mathbf {p_{ab}} &=-\mathbf {g} ^{2}\\\mathbf {r} &=\mathbf {i} -\mathbf {p_{ab}} +\left(\mathbf {i} \cos \beta +\mathbf {g} \sin \beta \right)\mathbf {p_{ab}} =e^{\mathbf {g} \beta }\end{aligned}}}
analysis easier in terms of these generators, rather full rotation matrix. analysis in terms of generators known lie algebra of rotation group.
Comments
Post a Comment